Topic:Infrared And Visible Image Fusion
What is Infrared And Visible Image Fusion? Infrared-and-visible image fusion is the process of combining images from different spectral bands to enhance visual perception.
Papers and Code
Sep 05, 2025
Abstract:Most existing infrared-visible image fusion (IVIF) methods assume high-quality inputs, and therefore struggle to handle dual-source degraded scenarios, typically requiring manual selection and sequential application of multiple pre-enhancement steps. This decoupled pre-enhancement-to-fusion pipeline inevitably leads to error accumulation and performance degradation. To overcome these limitations, we propose Guided Dual-Domain Fusion (GD^2Fusion), a novel framework that synergistically integrates vision-language models (VLMs) for degradation perception with dual-domain (frequency/spatial) joint optimization. Concretely, the designed Guided Frequency Modality-Specific Extraction (GFMSE) module performs frequency-domain degradation perception and suppression and discriminatively extracts fusion-relevant sub-band features. Meanwhile, the Guided Spatial Modality-Aggregated Fusion (GSMAF) module carries out cross-modal degradation filtering and adaptive multi-source feature aggregation in the spatial domain to enhance modality complementarity and structural consistency. Extensive qualitative and quantitative experiments demonstrate that GD^2Fusion achieves superior fusion performance compared with existing algorithms and strategies in dual-source degraded scenarios. The code will be publicly released after acceptance of this paper.
Via

Aug 28, 2025
Abstract:Most visible and infrared image fusion (VIF) methods focus primarily on optimizing fused image quality. Recent studies have begun incorporating downstream tasks, such as semantic segmentation and object detection, to provide semantic guidance for VIF. However, semantic segmentation requires extensive annotations, while object detection, despite reducing annotation efforts compared with segmentation, faces challenges in highly crowded scenes due to overlapping bounding boxes and occlusion. Moreover, although RGB-T crowd counting has gained increasing attention in recent years, no studies have integrated VIF and crowd counting into a unified framework. To address these challenges, we propose FusionCounting, a novel multi-task learning framework that integrates crowd counting into the VIF process. Crowd counting provides a direct quantitative measure of population density with minimal annotation, making it particularly suitable for dense scenes. Our framework leverages both input images and population density information in a mutually beneficial multi-task design. To accelerate convergence and balance tasks contributions, we introduce a dynamic loss function weighting strategy. Furthermore, we incorporate adversarial training to enhance the robustness of both VIF and crowd counting, improving the model's stability and resilience to adversarial attacks. Experimental results on public datasets demonstrate that FusionCounting not only enhances image fusion quality but also achieves superior crowd counting performance.
* 11 pages, 9 figures
Via

Aug 07, 2025
Abstract:Infrared and visible image fusion (IVIF) aims to combine the thermal radiation information from infrared images with the rich texture details from visible images to enhance perceptual capabilities for downstream visual tasks. However, existing methods often fail to preserve key targets due to a lack of deep semantic understanding of the scene, while the fusion process itself can also introduce artifacts and detail loss, severely compromising both image quality and task performance. To address these issues, this paper proposes SGDFuse, a conditional diffusion model guided by the Segment Anything Model (SAM), to achieve high-fidelity and semantically-aware image fusion. The core of our method is to utilize high-quality semantic masks generated by SAM as explicit priors to guide the optimization of the fusion process via a conditional diffusion model. Specifically, the framework operates in a two-stage process: it first performs a preliminary fusion of multi-modal features, and then utilizes the semantic masks from SAM jointly with the preliminary fused image as a condition to drive the diffusion model's coarse-to-fine denoising generation. This ensures the fusion process not only has explicit semantic directionality but also guarantees the high fidelity of the final result. Extensive experiments demonstrate that SGDFuse achieves state-of-the-art performance in both subjective and objective evaluations, as well as in its adaptability to downstream tasks, providing a powerful solution to the core challenges in image fusion. The code of SGDFuse is available at https://github.com/boshizhang123/SGDFuse.
* Submitted to TCSVT
Via

Aug 11, 2025
Abstract:The goal of multimodal image fusion is to integrate complementary information from infrared and visible images, generating multimodal fused images for downstream tasks. Existing downstream pre-training models are typically trained on visible images. However, the significant pixel distribution differences between visible and multimodal fusion images can degrade downstream task performance, sometimes even below that of using only visible images. This paper explores adapting multimodal fused images with significant modality differences to object detection and semantic segmentation models trained on visible images. To address this, we propose MambaTrans, a novel multimodal fusion image modality translator. MambaTrans uses descriptions from a multimodal large language model and masks from semantic segmentation models as input. Its core component, the Multi-Model State Space Block, combines mask-image-text cross-attention and a 3D-Selective Scan Module, enhancing pure visual capabilities. By leveraging object detection prior knowledge, MambaTrans minimizes detection loss during training and captures long-term dependencies among text, masks, and images. This enables favorable results in pre-trained models without adjusting their parameters. Experiments on public datasets show that MambaTrans effectively improves multimodal image performance in downstream tasks.
Via

Jul 27, 2025
Abstract:While illumination changes inevitably affect the quality of infrared and visible image fusion, many outstanding methods still ignore this factor and directly merge the information from source images, leading to modality bias in the fused results. To this end, we propose a dynamic multi-level image fusion network called MoCTEFuse, which applies an illumination-gated Mixture of Chiral Transformer Experts (MoCTE) to adaptively preserve texture details and object contrasts in balance. MoCTE consists of high- and low-illumination expert subnetworks, each built upon the Chiral Transformer Fusion Block (CTFB). Guided by the illumination gating signals, CTFB dynamically switches between the primary and auxiliary modalities as well as assigning them corresponding weights with its asymmetric cross-attention mechanism. Meanwhile, it is stacked at multiple stages to progressively aggregate and refine modality-specific and cross-modality information. To facilitate robust training, we propose a competitive loss function that integrates illumination distributions with three levels of sub-loss terms. Extensive experiments conducted on the DroneVehicle, MSRS, TNO and RoadScene datasets show MoCTEFuse's superior fusion performance. Finally, it achieves the best detection mean Average Precision (mAP) of 70.93% on the MFNet dataset and 45.14% on the DroneVehicle dataset. The code and model are released at https://github.com/Bitlijinfu/MoCTEFuse.
Via

Jul 28, 2025
Abstract:Traditional ship detection methods primarily rely on single-modal approaches, such as visible or infrared images, which limit their application in complex scenarios involving varying lighting conditions and heavy fog. To address this issue, we explore the advantages of short-wave infrared (SWIR) and long-wave infrared (LWIR) in ship detection and propose a novel single-stage image fusion detection algorithm called LSFDNet. This algorithm leverages feature interaction between the image fusion and object detection subtask networks, achieving remarkable detection performance and generating visually impressive fused images. To further improve the saliency of objects in the fused images and improve the performance of the downstream detection task, we introduce the Multi-Level Cross-Fusion (MLCF) module. This module combines object-sensitive fused features from the detection task and aggregates features across multiple modalities, scales, and tasks to obtain more semantically rich fused features. Moreover, we utilize the position prior from the detection task in the Object Enhancement (OE) loss function, further increasing the retention of object semantics in the fused images. The detection task also utilizes preliminary fused features from the fusion task to complement SWIR and LWIR features, thereby enhancing detection performance. Additionally, we have established a Nearshore Ship Long-Short Wave Registration (NSLSR) dataset to train effective SWIR and LWIR image fusion and detection networks, bridging a gap in this field. We validated the superiority of our proposed single-stage fusion detection algorithm on two datasets. The source code and dataset are available at https://github.com/Yanyin-Guo/LSFDNet
* ACMMM2025
Via

Jul 28, 2025
Abstract:Multimodal fusion has become a key enabler for UAV-based object detection, as each modality provides complementary cues for robust feature extraction. However, due to significant differences in resolution, field of view, and sensing characteristics across modalities, accurate registration is a prerequisite before fusion. Despite its importance, there is currently no publicly available benchmark specifically designed for multimodal registration in UAV-based aerial scenarios, which severely limits the development and evaluation of advanced registration methods under real-world conditions. To bridge this gap, we present ATR-UMMIM, the first benchmark dataset specifically tailored for multimodal image registration in UAV-based applications. This dataset includes 7,969 triplets of raw visible, infrared, and precisely registered visible images captured covers diverse scenarios including flight altitudes from 80m to 300m, camera angles from 0{\deg} to 75{\deg}, and all-day, all-year temporal variations under rich weather and illumination conditions. To ensure high registration quality, we design a semi-automated annotation pipeline to introduce reliable pixel-level ground truth to each triplet. In addition, each triplet is annotated with six imaging condition attributes, enabling benchmarking of registration robustness under real-world deployment settings. To further support downstream tasks, we provide object-level annotations on all registered images, covering 11 object categories with 77,753 visible and 78,409 infrared bounding boxes. We believe ATR-UMMIM will serve as a foundational benchmark for advancing multimodal registration, fusion, and perception in real-world UAV scenarios. The datatset can be download from https://github.com/supercpy/ATR-UMMIM
Via

Jul 27, 2025
Abstract:Visible-infrared object detection aims to enhance the detection robustness by exploiting the complementary information of visible and infrared image pairs. However, its performance is often limited by frequent misalignments caused by resolution disparities, spatial displacements, and modality inconsistencies. To address this issue, we propose the Wavelet-guided Misalignment-aware Network (WMNet), a unified framework designed to adaptively address different cross-modal misalignment patterns. WMNet incorporates wavelet-based multi-frequency analysis and modality-aware fusion mechanisms to improve the alignment and integration of cross-modal features. By jointly exploiting low and high-frequency information and introducing adaptive guidance across modalities, WMNet alleviates the adverse effects of noise, illumination variation, and spatial misalignment. Furthermore, it enhances the representation of salient target features while suppressing spurious or misleading information, thereby promoting more accurate and robust detection. Extensive evaluations on the DVTOD, DroneVehicle, and M3FD datasets demonstrate that WMNet achieves state-of-the-art performance on misaligned cross-modal object detection tasks, confirming its effectiveness and practical applicability.
Via

Jul 22, 2025
Abstract:Images taken in low light often show color shift, low contrast, noise, and other artifacts that hurt computer-vision accuracy. Retinex theory addresses this by viewing an image S as the pixel-wise product of reflectance R and illumination I, mirroring the way people perceive stable object colors under changing light. The decomposition is ill-posed, and classic Retinex models have four key flaws: (i) they treat the red, green, and blue channels independently; (ii) they lack a neuroscientific model of color vision; (iii) they cannot perfectly rebuild the input image; and (iv) they do not explain human color constancy. We introduce the first Quaternion Retinex formulation, in which the scene is written as the Hamilton product of quaternion-valued reflectance and illumination. To gauge how well reflectance stays invariant, we propose the Reflectance Consistency Index. Tests on low-light crack inspection, face detection under varied lighting, and infrared-visible fusion show gains of 2-11 percent over leading methods, with better color fidelity, lower noise, and higher reflectance stability.
Via

Jun 17, 2025
Abstract:In the field of image fusion, promising progress has been made by modeling data from different modalities as linear subspaces. However, in practice, the source images are often located in a non-Euclidean space, where the Euclidean methods usually cannot encapsulate the intrinsic topological structure. Typically, the inner product performed in the Euclidean space calculates the algebraic similarity rather than the semantic similarity, which results in undesired attention output and a decrease in fusion performance. While the balance of low-level details and high-level semantics should be considered in infrared and visible image fusion task. To address this issue, in this paper, we propose a novel attention mechanism based on Grassmann manifold for infrared and visible image fusion (GrFormer). Specifically, our method constructs a low-rank subspace mapping through projection constraints on the Grassmann manifold, compressing attention features into subspaces of varying rank levels. This forces the features to decouple into high-frequency details (local low-rank) and low-frequency semantics (global low-rank), thereby achieving multi-scale semantic fusion. Additionally, to effectively integrate the significant information, we develop a cross-modal fusion strategy (CMS) based on a covariance mask to maximise the complementary properties between different modalities and to suppress the features with high correlation, which are deemed redundant. The experimental results demonstrate that our network outperforms SOTA methods both qualitatively and quantitatively on multiple image fusion benchmarks. The codes are available at https://github.com/Shaoyun2023.
* 16 pages, 11 figures
Via
